Copied to
clipboard

G = C324CSU2(𝔽3)  order 432 = 24·33

2nd semidirect product of C32 and CSU2(𝔽3) acting via CSU2(𝔽3)/SL2(𝔽3)=C2

non-abelian, soluble

Aliases: C324CSU2(𝔽3), C3⋊(C6.5S4), C6.9(C3⋊S4), (C3×C6).22S4, Q8.(C33⋊C2), (Q8×C32).16S3, SL2(𝔽3).(C3⋊S3), C2.2(C324S4), (C3×SL2(𝔽3)).8S3, (C32×SL2(𝔽3)).2C2, (C3×Q8).5(C3⋊S3), SmallGroup(432,619)

Series: Derived Chief Lower central Upper central

C1C2Q8C32×SL2(𝔽3) — C324CSU2(𝔽3)
C1C2Q8C3×Q8Q8×C32C32×SL2(𝔽3) — C324CSU2(𝔽3)
C32×SL2(𝔽3) — C324CSU2(𝔽3)
C1C2

Generators and relations for C324CSU2(𝔽3)
 G = < a,b,c,d,e,f | a3=b3=c4=e3=1, d2=f2=c2, ab=ba, ac=ca, ad=da, ae=ea, faf-1=a-1, bc=cb, bd=db, be=eb, fbf-1=b-1, dcd-1=fdf-1=c-1, ece-1=cd, fcf-1=c2d, ede-1=c, fef-1=e-1 >

Subgroups: 1154 in 158 conjugacy classes, 41 normal (8 characteristic)
C1, C2, C3, C3, C4, C6, C6, C8, Q8, Q8, C32, C32, Dic3, C12, Q16, C3×C6, C3×C6, C3⋊C8, SL2(𝔽3), Dic6, C3×Q8, C33, C3⋊Dic3, C3×C12, C3⋊Q16, CSU2(𝔽3), C32×C6, C324C8, C3×SL2(𝔽3), C324Q8, Q8×C32, C335C4, C327Q16, C6.5S4, C32×SL2(𝔽3), C324CSU2(𝔽3)
Quotients: C1, C2, S3, C3⋊S3, S4, CSU2(𝔽3), C33⋊C2, C3⋊S4, C6.5S4, C324S4, C324CSU2(𝔽3)

Smallest permutation representation of C324CSU2(𝔽3)
On 144 points
Generators in S144
(1 54 30)(2 55 31)(3 56 32)(4 53 29)(5 99 123)(6 100 124)(7 97 121)(8 98 122)(9 57 33)(10 58 34)(11 59 35)(12 60 36)(13 61 37)(14 62 38)(15 63 39)(16 64 40)(17 65 41)(18 66 42)(19 67 43)(20 68 44)(21 69 45)(22 70 46)(23 71 47)(24 72 48)(25 73 49)(26 74 50)(27 75 51)(28 76 52)(77 101 125)(78 102 126)(79 103 127)(80 104 128)(81 105 129)(82 106 130)(83 107 131)(84 108 132)(85 109 133)(86 110 134)(87 111 135)(88 112 136)(89 113 137)(90 114 138)(91 115 139)(92 116 140)(93 117 141)(94 118 142)(95 119 143)(96 120 144)
(1 22 14)(2 23 15)(3 24 16)(4 21 13)(5 131 139)(6 132 140)(7 129 137)(8 130 138)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)(33 49 41)(34 50 42)(35 51 43)(36 52 44)(53 69 61)(54 70 62)(55 71 63)(56 72 64)(57 73 65)(58 74 66)(59 75 67)(60 76 68)(77 85 93)(78 86 94)(79 87 95)(80 88 96)(81 89 97)(82 90 98)(83 91 99)(84 92 100)(101 109 117)(102 110 118)(103 111 119)(104 112 120)(105 113 121)(106 114 122)(107 115 123)(108 116 124)(125 133 141)(126 134 142)(127 135 143)(128 136 144)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)
(1 11 3 9)(2 10 4 12)(5 143 7 141)(6 142 8 144)(13 20 15 18)(14 19 16 17)(21 28 23 26)(22 27 24 25)(29 36 31 34)(30 35 32 33)(37 44 39 42)(38 43 40 41)(45 52 47 50)(46 51 48 49)(53 60 55 58)(54 59 56 57)(61 68 63 66)(62 67 64 65)(69 76 71 74)(70 75 72 73)(77 83 79 81)(78 82 80 84)(85 91 87 89)(86 90 88 92)(93 99 95 97)(94 98 96 100)(101 107 103 105)(102 106 104 108)(109 115 111 113)(110 114 112 116)(117 123 119 121)(118 122 120 124)(125 131 127 129)(126 130 128 132)(133 139 135 137)(134 138 136 140)
(1 54 30)(2 59 34)(3 56 32)(4 57 36)(5 98 118)(6 96 121)(7 100 120)(8 94 123)(9 60 29)(10 55 35)(11 58 31)(12 53 33)(13 65 44)(14 62 38)(15 67 42)(16 64 40)(17 68 37)(18 63 43)(19 66 39)(20 61 41)(21 73 52)(22 70 46)(23 75 50)(24 72 48)(25 76 45)(26 71 51)(27 74 47)(28 69 49)(77 101 125)(78 107 130)(79 103 127)(80 105 132)(81 108 128)(82 102 131)(83 106 126)(84 104 129)(85 109 133)(86 115 138)(87 111 135)(88 113 140)(89 116 136)(90 110 139)(91 114 134)(92 112 137)(93 117 141)(95 119 143)(97 124 144)(99 122 142)
(1 77 3 79)(2 81 4 83)(5 71 7 69)(6 76 8 74)(9 78 11 80)(10 84 12 82)(13 91 15 89)(14 85 16 87)(17 86 19 88)(18 92 20 90)(21 99 23 97)(22 93 24 95)(25 94 27 96)(26 100 28 98)(29 107 31 105)(30 101 32 103)(33 102 35 104)(34 108 36 106)(37 115 39 113)(38 109 40 111)(41 110 43 112)(42 116 44 114)(45 123 47 121)(46 117 48 119)(49 118 51 120)(50 124 52 122)(53 131 55 129)(54 125 56 127)(57 126 59 128)(58 132 60 130)(61 139 63 137)(62 133 64 135)(65 134 67 136)(66 140 68 138)(70 141 72 143)(73 142 75 144)

G:=sub<Sym(144)| (1,54,30)(2,55,31)(3,56,32)(4,53,29)(5,99,123)(6,100,124)(7,97,121)(8,98,122)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48)(25,73,49)(26,74,50)(27,75,51)(28,76,52)(77,101,125)(78,102,126)(79,103,127)(80,104,128)(81,105,129)(82,106,130)(83,107,131)(84,108,132)(85,109,133)(86,110,134)(87,111,135)(88,112,136)(89,113,137)(90,114,138)(91,115,139)(92,116,140)(93,117,141)(94,118,142)(95,119,143)(96,120,144), (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,131,139)(6,132,140)(7,129,137)(8,130,138)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,73,65)(58,74,66)(59,75,67)(60,76,68)(77,85,93)(78,86,94)(79,87,95)(80,88,96)(81,89,97)(82,90,98)(83,91,99)(84,92,100)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,121)(106,114,122)(107,115,123)(108,116,124)(125,133,141)(126,134,142)(127,135,143)(128,136,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,143,7,141)(6,142,8,144)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,36,31,34)(30,35,32,33)(37,44,39,42)(38,43,40,41)(45,52,47,50)(46,51,48,49)(53,60,55,58)(54,59,56,57)(61,68,63,66)(62,67,64,65)(69,76,71,74)(70,75,72,73)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,99,95,97)(94,98,96,100)(101,107,103,105)(102,106,104,108)(109,115,111,113)(110,114,112,116)(117,123,119,121)(118,122,120,124)(125,131,127,129)(126,130,128,132)(133,139,135,137)(134,138,136,140), (1,54,30)(2,59,34)(3,56,32)(4,57,36)(5,98,118)(6,96,121)(7,100,120)(8,94,123)(9,60,29)(10,55,35)(11,58,31)(12,53,33)(13,65,44)(14,62,38)(15,67,42)(16,64,40)(17,68,37)(18,63,43)(19,66,39)(20,61,41)(21,73,52)(22,70,46)(23,75,50)(24,72,48)(25,76,45)(26,71,51)(27,74,47)(28,69,49)(77,101,125)(78,107,130)(79,103,127)(80,105,132)(81,108,128)(82,102,131)(83,106,126)(84,104,129)(85,109,133)(86,115,138)(87,111,135)(88,113,140)(89,116,136)(90,110,139)(91,114,134)(92,112,137)(93,117,141)(95,119,143)(97,124,144)(99,122,142), (1,77,3,79)(2,81,4,83)(5,71,7,69)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,91,15,89)(14,85,16,87)(17,86,19,88)(18,92,20,90)(21,99,23,97)(22,93,24,95)(25,94,27,96)(26,100,28,98)(29,107,31,105)(30,101,32,103)(33,102,35,104)(34,108,36,106)(37,115,39,113)(38,109,40,111)(41,110,43,112)(42,116,44,114)(45,123,47,121)(46,117,48,119)(49,118,51,120)(50,124,52,122)(53,131,55,129)(54,125,56,127)(57,126,59,128)(58,132,60,130)(61,139,63,137)(62,133,64,135)(65,134,67,136)(66,140,68,138)(70,141,72,143)(73,142,75,144)>;

G:=Group( (1,54,30)(2,55,31)(3,56,32)(4,53,29)(5,99,123)(6,100,124)(7,97,121)(8,98,122)(9,57,33)(10,58,34)(11,59,35)(12,60,36)(13,61,37)(14,62,38)(15,63,39)(16,64,40)(17,65,41)(18,66,42)(19,67,43)(20,68,44)(21,69,45)(22,70,46)(23,71,47)(24,72,48)(25,73,49)(26,74,50)(27,75,51)(28,76,52)(77,101,125)(78,102,126)(79,103,127)(80,104,128)(81,105,129)(82,106,130)(83,107,131)(84,108,132)(85,109,133)(86,110,134)(87,111,135)(88,112,136)(89,113,137)(90,114,138)(91,115,139)(92,116,140)(93,117,141)(94,118,142)(95,119,143)(96,120,144), (1,22,14)(2,23,15)(3,24,16)(4,21,13)(5,131,139)(6,132,140)(7,129,137)(8,130,138)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40)(33,49,41)(34,50,42)(35,51,43)(36,52,44)(53,69,61)(54,70,62)(55,71,63)(56,72,64)(57,73,65)(58,74,66)(59,75,67)(60,76,68)(77,85,93)(78,86,94)(79,87,95)(80,88,96)(81,89,97)(82,90,98)(83,91,99)(84,92,100)(101,109,117)(102,110,118)(103,111,119)(104,112,120)(105,113,121)(106,114,122)(107,115,123)(108,116,124)(125,133,141)(126,134,142)(127,135,143)(128,136,144), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144), (1,11,3,9)(2,10,4,12)(5,143,7,141)(6,142,8,144)(13,20,15,18)(14,19,16,17)(21,28,23,26)(22,27,24,25)(29,36,31,34)(30,35,32,33)(37,44,39,42)(38,43,40,41)(45,52,47,50)(46,51,48,49)(53,60,55,58)(54,59,56,57)(61,68,63,66)(62,67,64,65)(69,76,71,74)(70,75,72,73)(77,83,79,81)(78,82,80,84)(85,91,87,89)(86,90,88,92)(93,99,95,97)(94,98,96,100)(101,107,103,105)(102,106,104,108)(109,115,111,113)(110,114,112,116)(117,123,119,121)(118,122,120,124)(125,131,127,129)(126,130,128,132)(133,139,135,137)(134,138,136,140), (1,54,30)(2,59,34)(3,56,32)(4,57,36)(5,98,118)(6,96,121)(7,100,120)(8,94,123)(9,60,29)(10,55,35)(11,58,31)(12,53,33)(13,65,44)(14,62,38)(15,67,42)(16,64,40)(17,68,37)(18,63,43)(19,66,39)(20,61,41)(21,73,52)(22,70,46)(23,75,50)(24,72,48)(25,76,45)(26,71,51)(27,74,47)(28,69,49)(77,101,125)(78,107,130)(79,103,127)(80,105,132)(81,108,128)(82,102,131)(83,106,126)(84,104,129)(85,109,133)(86,115,138)(87,111,135)(88,113,140)(89,116,136)(90,110,139)(91,114,134)(92,112,137)(93,117,141)(95,119,143)(97,124,144)(99,122,142), (1,77,3,79)(2,81,4,83)(5,71,7,69)(6,76,8,74)(9,78,11,80)(10,84,12,82)(13,91,15,89)(14,85,16,87)(17,86,19,88)(18,92,20,90)(21,99,23,97)(22,93,24,95)(25,94,27,96)(26,100,28,98)(29,107,31,105)(30,101,32,103)(33,102,35,104)(34,108,36,106)(37,115,39,113)(38,109,40,111)(41,110,43,112)(42,116,44,114)(45,123,47,121)(46,117,48,119)(49,118,51,120)(50,124,52,122)(53,131,55,129)(54,125,56,127)(57,126,59,128)(58,132,60,130)(61,139,63,137)(62,133,64,135)(65,134,67,136)(66,140,68,138)(70,141,72,143)(73,142,75,144) );

G=PermutationGroup([[(1,54,30),(2,55,31),(3,56,32),(4,53,29),(5,99,123),(6,100,124),(7,97,121),(8,98,122),(9,57,33),(10,58,34),(11,59,35),(12,60,36),(13,61,37),(14,62,38),(15,63,39),(16,64,40),(17,65,41),(18,66,42),(19,67,43),(20,68,44),(21,69,45),(22,70,46),(23,71,47),(24,72,48),(25,73,49),(26,74,50),(27,75,51),(28,76,52),(77,101,125),(78,102,126),(79,103,127),(80,104,128),(81,105,129),(82,106,130),(83,107,131),(84,108,132),(85,109,133),(86,110,134),(87,111,135),(88,112,136),(89,113,137),(90,114,138),(91,115,139),(92,116,140),(93,117,141),(94,118,142),(95,119,143),(96,120,144)], [(1,22,14),(2,23,15),(3,24,16),(4,21,13),(5,131,139),(6,132,140),(7,129,137),(8,130,138),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40),(33,49,41),(34,50,42),(35,51,43),(36,52,44),(53,69,61),(54,70,62),(55,71,63),(56,72,64),(57,73,65),(58,74,66),(59,75,67),(60,76,68),(77,85,93),(78,86,94),(79,87,95),(80,88,96),(81,89,97),(82,90,98),(83,91,99),(84,92,100),(101,109,117),(102,110,118),(103,111,119),(104,112,120),(105,113,121),(106,114,122),(107,115,123),(108,116,124),(125,133,141),(126,134,142),(127,135,143),(128,136,144)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144)], [(1,11,3,9),(2,10,4,12),(5,143,7,141),(6,142,8,144),(13,20,15,18),(14,19,16,17),(21,28,23,26),(22,27,24,25),(29,36,31,34),(30,35,32,33),(37,44,39,42),(38,43,40,41),(45,52,47,50),(46,51,48,49),(53,60,55,58),(54,59,56,57),(61,68,63,66),(62,67,64,65),(69,76,71,74),(70,75,72,73),(77,83,79,81),(78,82,80,84),(85,91,87,89),(86,90,88,92),(93,99,95,97),(94,98,96,100),(101,107,103,105),(102,106,104,108),(109,115,111,113),(110,114,112,116),(117,123,119,121),(118,122,120,124),(125,131,127,129),(126,130,128,132),(133,139,135,137),(134,138,136,140)], [(1,54,30),(2,59,34),(3,56,32),(4,57,36),(5,98,118),(6,96,121),(7,100,120),(8,94,123),(9,60,29),(10,55,35),(11,58,31),(12,53,33),(13,65,44),(14,62,38),(15,67,42),(16,64,40),(17,68,37),(18,63,43),(19,66,39),(20,61,41),(21,73,52),(22,70,46),(23,75,50),(24,72,48),(25,76,45),(26,71,51),(27,74,47),(28,69,49),(77,101,125),(78,107,130),(79,103,127),(80,105,132),(81,108,128),(82,102,131),(83,106,126),(84,104,129),(85,109,133),(86,115,138),(87,111,135),(88,113,140),(89,116,136),(90,110,139),(91,114,134),(92,112,137),(93,117,141),(95,119,143),(97,124,144),(99,122,142)], [(1,77,3,79),(2,81,4,83),(5,71,7,69),(6,76,8,74),(9,78,11,80),(10,84,12,82),(13,91,15,89),(14,85,16,87),(17,86,19,88),(18,92,20,90),(21,99,23,97),(22,93,24,95),(25,94,27,96),(26,100,28,98),(29,107,31,105),(30,101,32,103),(33,102,35,104),(34,108,36,106),(37,115,39,113),(38,109,40,111),(41,110,43,112),(42,116,44,114),(45,123,47,121),(46,117,48,119),(49,118,51,120),(50,124,52,122),(53,131,55,129),(54,125,56,127),(57,126,59,128),(58,132,60,130),(61,139,63,137),(62,133,64,135),(65,134,67,136),(66,140,68,138),(70,141,72,143),(73,142,75,144)]])

36 conjugacy classes

class 1  2 3A3B3C3D3E···3M4A4B6A6B6C6D6E···6M8A8B12A12B12C12D
order1233333···34466666···68812121212
size1122228···8610822228···8545412121212

36 irreducible representations

dim112223446
type++++-+--+
imageC1C2S3S3CSU2(𝔽3)S4CSU2(𝔽3)C6.5S4C3⋊S4
kernelC324CSU2(𝔽3)C32×SL2(𝔽3)C3×SL2(𝔽3)Q8×C32C32C3×C6C32C3C6
# reps11121221124

Matrix representation of C324CSU2(𝔽3) in GL6(𝔽73)

72720000
100000
001000
000100
000010
000001
,
72720000
100000
0072100
0072000
000010
000001
,
100000
010000
001000
000100
000064
0000967
,
100000
010000
001000
000100
0000637
00006910
,
100000
010000
0007200
0017200
0000721
0000720
,
100000
72720000
000100
001000
00003648
00001137

G:=sub<GL(6,GF(73))| [72,1,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[72,1,0,0,0,0,72,0,0,0,0,0,0,0,72,72,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,6,9,0,0,0,0,4,67],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,63,69,0,0,0,0,7,10],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,72,72,0,0,0,0,0,0,72,72,0,0,0,0,1,0],[1,72,0,0,0,0,0,72,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,36,11,0,0,0,0,48,37] >;

C324CSU2(𝔽3) in GAP, Magma, Sage, TeX

C_3^2\rtimes_4{\rm CSU}_2({\mathbb F}_3)
% in TeX

G:=Group("C3^2:4CSU(2,3)");
// GroupNames label

G:=SmallGroup(432,619);
// by ID

G=gap.SmallGroup(432,619);
# by ID

G:=PCGroup([7,-2,-3,-3,-3,-2,2,-2,1512,57,254,1011,3784,5681,172,2273,3414,285,124]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^3=b^3=c^4=e^3=1,d^2=f^2=c^2,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,f*a*f^-1=a^-1,b*c=c*b,b*d=d*b,b*e=e*b,f*b*f^-1=b^-1,d*c*d^-1=f*d*f^-1=c^-1,e*c*e^-1=c*d,f*c*f^-1=c^2*d,e*d*e^-1=c,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽